UNIT 2: COUNTING METHODS

Section 2.1: Counting Principles

Example 1: (p. 68)

Hannah plays on her school soccer team. The soccer uniforms has:

- three different sweaters: red, white, and black and
- three different shorts: red, white, and black.

How many different variations of the soccer uniform can the coach choose from for each game?

In other words, what is the *sample space*, the different possible outcomes.

Strategy 1: Tree Diagram

NOTE: A tree diagram works but not an efficient method when working with a large sample space.

Strategy 2: FUNDAMENTAL COUNTING PRINCIPLE (FCP)

If one task can be performed in a ways,

a second task can be performed in *b* ways,

and a third task can be performed in *c* ways,

then the number of ways to perform all the tasks together is: $a \times b \times c$

For the example above,

=

U = (# of sweaters) X (# of shorts)

If the coach plans on adding 2 different pairs of socks, black or white, how many variations of uniforms will there be?

U = ____ X ____ X ___ = ____

Example 2:

The school cafeteria advertises that it can serve up to 24 different meals \checkmark consisting of one item from each of the three categories:

Fruit:	Apples (A), Bananas(B) or Cantaloupe(C)
Sandwiches:	Roast Beef (R) or Turkey (T)
Beverages:	Lemonade (L), Milk (M), Orange Juice (O) or
	Pineapple Juice (P)

Is their advertising correct?

choices for fruit choices for sandwich choices for beverage Distinguish between the words AND/OR

3 fruit choices x 2 sandwich choices x 4 beverage choices = 24 possibilities

3 fruit choices + 2 sandwich choices + 4 beverage choices = 9 possibilities

Fundamental Counting Principle Arrangements Without Restrictions

Example 3:

A store manager has selected 4 possible applicants for two different positions at a department store. In how many ways can the manager fill the positions?

of choices for position 1 and # of choices for position 2

of ways to fill the positions _____

Example 4:

How many ways can the letters in the word PENCIL be arranged?

Idea: We have 6 objects and 6 possible positions to occupy

Fundamental Counting Principle

→ Arrangements With Restrictions

Example 5:

In how many ways can a teacher seat 4 boys and three girls in a row of 7 seats if a boy must be seated at each of the row?

Restriction: a boy must be in each end seat.

- Fill seats 1 and 7 first
- Then fill remaining seats

Example 6: (p. 69)

A luggage lock opens with the correct three-digit code. Each wheel rotates through the digits 0 to 9.

a) How many different three-digit codes are possible (if repetition is allowed)?

b) Suppose each digit can be used only once in a code. How many different codes are possible when repetition is NOT allowed?

4	*	Ţ	4	*	*2	3	* * *	a.ŧ	4. *	* *;	5. * *	* *	€	* * *	7.4 *	*	**************************************	*	2* ** *	****	24.4 *** *** ***	-	.
4	4	ļ	*	* *	*	3	* * *	•	4.♠ ♥	^ ♥;	5. ▲ •	* * *	6.♠ ♥ ♥	♠ ♥ ♥	₹. ₩ ₩	*	** *	* * *	₽.	↑ ↑ ↓ ↓ ↓ ↓ ↓ ↓ ↓			***
¢	۲	\$	÷	*	•	3	*		•	¥ A;	\$ v	× •\$	\$¥ •	¥ A A\$		× • •			÷v XA	× ×		8	e
¢	•	\$	•	•	•	3	* * *	•	•	• •;	5 • •	• • • • •	6 ◆ ◆	 ♦ ♦ ♦ 	?◆ ◆	•	₿. • •		₽	* * * *			.

A standard deck of cards contains 52 cards as shown.

Count the number of possibilities of drawing a single card and getting:

a) either a black face card or an ace

b) either a red card or a 10

b)

a)

Practice Questions:

P. 73-75, #3,6,7,8,9ab,11ab,14,16ab