A permutation of 'n' elements taken 'n' at a time ( $_{n}P_{n}$  or n!) is affected if one or more elements in the set are IDENTICAL.

For example,

If a set of 3 marbles consists of 2 identical green marbles and 1 blue marble, the set {G1, G2, B} is identical to {G2, G1, B}. This configuration is counted as two different arrangements instead of one.

Therefore, it must be removed from the total count by dividing out repetitions (  $\frac{3!}{2!}$  )

| In general,                    |                                   |
|--------------------------------|-----------------------------------|
| The number of permuta          | tions of 'n' objects containing   |
| 'a' identical objects of one l | kind and 'b' identical objects of |
| another kind and so on is:     | $\frac{n!}{a!b!}$                 |

Dividing n! by a! and b! eliminates arrangements that are the same and that would otherwise be counted multiple times.

### Example 1:

If there are 9 different cookies (4 chocolate chip, 3 oatmeal and 2 raisin), in how many different orders can you eat all of them if you eat one at a time?

### Example 2:

How many different ways can you arrange the letters in the word MATHEMATICS?

## Example 3: (ex. 2, p. 101)

How many ways can the letters in CANADA be arranged, if the first letter must be N and the last letter must be C?

# Example 4: (ex. 3, p. 102)

Julie's home is three blocks north and five blocks west of her school. How many routes can Julie take from home to school if she always travels either south or east?



# Example 5:

Determine the number of routes there are to get from point A to point B, if you travel only south or east?



