Combination

\longrightarrow arranging all or part of a set of distinguishable objects where ORDER does NOT matter

Think about: Students choose two letters from the list A, B, C
\# of arrangments: $\quad \mathrm{AB}$ BA $\mathrm{AC} \quad \mathrm{CA} \quad \mathrm{BC} \quad \mathrm{CB}$

Verify using permutations: $\quad{ }_{3} P_{2}=$
order in which the letters are chosen is not important:
\(\left.\begin{array}{l}A B is same as B A

A C is same as C A

B C is same as C B\end{array}\right\}\)| each group of |
| :--- |
| 2 permutations |
| is just |

\# of combinations:

In general, given a set of ' n ' objects, taken ' r ' at a time, the number of possible combinations is:

$$
{ }_{n} C_{r}=\frac{n!}{r!(n-r)!} \quad \text { or } \quad{ }_{n} C_{r}=\frac{{ }_{n} P_{r}}{r!}
$$

This may be denoted as $\binom{n}{r}$ read as "n choose r"

Example 1:
Identify each of the following as a permutation or a combination.
a) A fruit salad consisting of apples, grapes and strawberries.
b) The combination to a safe is 4-7-2.

Example 2:

In a lottery, 6 numbers from 1 to 49 are selected.
Compare the number of possibilities whether order matters (permutation) or whether order does not matter (combination).

NOTE: The \# of combinations is LESS than the \# of permutations.

Example 3:
There are 10 members of student council. How many ways can 4 of the members be chosen to serve on the dance committee?

Example 4:
An ice cream parlour serves 10 flavours of ice cream. A large sundae has 3 scoops of ice cream. How many different ice-cream combinations are there if each scoop in the sundae is a different flavour?

Example 5:

A team consists of 9 players: 5 male and 4 female.
a) How many different 4-person teams does the coach have to choose from for an all-male competition?
b) How many different 4-person teams does the coach have to choose from, with 2 males and 2 females, for a mixed competition?

Example 6:

The student council decides to form a sub-committee of 5 members to plan their Christmas Concert. There are a total of 11 student members: 5 males and 6 females.
a) Determine how many different ways the sub-committee can consist of exactly three females.
b) Determine how many different ways the sub-committee can consist of at least three females.
c) Determine how many different ways the sub-committee can consist of at least one female.

Example 7:
Solve:
a) ${ }_{n-2} C_{2}=36$
b) ${ }_{n+1} C_{1}=20$

Practice Questions: p.110, \#1abcd
p.118-120, \#4acdf, 5, 10, 11abcde, 12, 15a

