## CHAPTER 4 Rational Expressions and Equations

## Section 4.1: Equivalent Rational Expressions

Rational Expression:
A rational expression is any expression that can be written as the quotient of two polynomials, in the form $\frac{P(x)}{Q(x)}$, where $Q(x) \neq 0$.

Rational Expressions include:

- A fraction that contains a polynomial in the numerator or denominator or both.
- A fraction that contains a variable.
- NOTE: All rational expressions are algebraic fractions, but not all algebraic fractions are rational expressions.

For example,

$$
\frac{1}{x}, \frac{m}{m+1}, \frac{y^{2}-1}{y^{2}+2 y+1}
$$



## Example 1:

Which of the following are rational expressions?

$$
\frac{2 x}{y}, \frac{4}{5}, \frac{x^{2}-4}{x+1}, 2 \pi, \frac{x^{2}}{4}, \quad \sqrt{5}, \frac{\sqrt{x}}{2 y}
$$

Non - Permissible Values (NPVs):
Values that make the denominator of a rational expression equal zero.

To determine the NPVs:

1) Set the denominator equal to zero.
2) Solve for the variable.

You may need to FACTOR to solve the equation.
All NPVs must be stated as restrictions on the variable in order to ensure the expression is defined.

## Example 2:

Determine the non permissible values for the expression $\frac{x}{x+2}$
and then state the restrictions.


The non permissible value(s) for the expression are:
and the restrictions are:

## M3201 0- Section 4.1

## Example 3:

What are the non - permissible values of $\frac{x}{x^{2}-9}$ ?

## Example 4:

Determine the non-permissible values for: $\frac{x-1}{3 x^{2}-12 x}$

Your Turn: (ex. 3, p. 219)
Determine the NPVs for each rational expression and then state all the restrictions.
a) $\frac{4 x^{3}}{6-2 x}$
b) $\frac{-15}{x^{3}-4 x}$

## M3201 0-Section 4.1

## Example 5:



Who is correct? Justify your answer.

NOTE:
Non - permissible values and inadmissable values are not the same.
Non - permissible values are values that make the denominator of a rational expression zero.

Inadmissible values are values that do not make sense in a given context. For example, you cannot have a negative length.

## M3201 0-Section 4.1

## Equivalent Rational Expressions:

## Recall:

If we have a rational number and multiply/divide the numerator and denominator by a number (that is, if we multiply/divide the fraction by 1 ), it does not change the number.

We say the two fractions are equivalent rational numbers.

For example, consider the fraction $\frac{3}{2}$.

$$
\frac{3}{2}=\frac{3}{2} \times 1=\frac{3}{2} \times \frac{4}{4}=\frac{12}{8}
$$

We say $\frac{3}{2}$ and $\frac{12}{8}$ are equivalent fractions.

Does this apply to rational expressions as well?
Yes, it is similar but there are some restrictions!

## Equivalent Rational Expressions:

Two rational expressions are equivalent only if they have the same restrictions.

This is accomplished by:

1. Multiplying or dividing the numerator and denominator by a number.
2. Multiplying the numerator and denominator by a factor that appears in the denominator.

## M3201 0- Section 4.1

Example 6:
a) Are $\frac{7 x}{x-2}$ and $\frac{14 x}{2(x-2)}$ equivalent rational expressions?
b) Are $\frac{7 x}{x-2}$ and $\frac{7 x^{2}}{x(x-2)}$ equivalent rational expressions?

Example 7: (ex. 2, p. 218)
a) Write a rational number that is equivalent to $\frac{8}{12}$.
b) Write a rational expression that is equivalent to $\frac{4 x^{2}+8 x}{4 x}$.

Example 8: (ex. 4, p. 220)
For each of the following, determine if the rational expressions are equivalent.
a) $\frac{9}{3 x-1}$ and $\frac{-18}{2-6 x}$
b) $\frac{2-2 x}{4 x}$ and $\frac{x-1}{2 x}$

## Practice Questions:

Worksheet 4.1,
p. 222-223, \#9a(i, ii, iii), 11a(i, ii, iii), 16abcd

