Section 4.3: Multiplying and Dividing Rational Expressions

Multiplying Rational Expressions

Multiplying rational expressions follows the same procedure as multiplying rational numbers , however you have to determine the non - permissible values for the variables.

Recall:
$$\frac{3}{4} \times \frac{6}{9} = \frac{18}{36} = \frac{1}{2}$$

You can also reduce first before you multiply.

When Multiplying Rational Expressions, you should:

- 1. Factor the numerators and denominators of both expressions, if possible.
- 2. Identify the non permissible values.
- 3. Reduce like factors.
- 4. Write the product and state the restrictions.

Example 1: (ex. 1, p. 233)

Simplify:
$$\frac{2x^2 - 12x}{15x} \frac{5x}{x - 6}$$

M3201 - Section 4.3

Your Turn: Simplify each of the following:

a)
$$\frac{40x^2 - 20x}{18x} \frac{30x}{x-5}$$
 b) $\frac{18x^3 - 12x}{5x - 15x^2} \frac{1 - 9x^2}{24x^2}$

Dividing Rational Expressions

The rule for dividing rational expressions is the same as dividing rational numbers,

Multiply by the Reciprocal

Recall: $\frac{3}{4} \div \frac{1}{2} = \frac{3}{4} \times \frac{2}{1} = \frac{6}{4} = \frac{3}{2}$

When Dividing Rational Expressions, you should:

- 1. Factor the numerators and denominators of both expressions, if possible.
- 2. Identify the non permissible values.

Remember to consider both the numerator and denominator of the second rational expression (divisor) when identifying NPVs.

- 3. Multiply by the reciprocal.
- 4. Reduce like factors.
- 5. Write the quotient and state the restrictions.

Example 2: (ex. 2, p. 234)

Simplify each quotient and state the restrictions.

a)
$$\frac{x-5}{3x^2-9x} \div \frac{5}{6x-18}$$
 b) $\frac{2w}{24w+4w^2} \div \frac{6w^2-6w}{9w^3+54w^2}$

Your Turn: Simplify each of the following:

a)
$$\frac{30x^2 + 15x}{x - 3} \div \frac{2x^3 + x^2}{x^2 - 3x}$$
 b) $\frac{25 - x^2}{3x^2 + 6x} \div \frac{7x - 35}{x^2 - 4}$

Example 3:

Simplify:

$x^2 - 16$
$2x^2 - 10x$
$4x^3 + 16x^2$
$\overline{x^2-5x}$

Practice Questions:

p. 238 - 239, #1ab, 2bc, 3cd, 4ad, 5b, 6bd, 7bd