Section 4.5 - Solving Rational Equations

Rational Equation

- an equation that contains at least one rational expression.

For example: $\quad x=\frac{x-3}{x+1}$ and $\frac{x}{4}-\frac{7}{x}=3$

To Solve a Rational Equation:

1. Factor each denominator
2. Identify the non - permissible values
3. Method 1: Multiply both sides of the equation by the LCD OR

Method 2: Add/Subtract fractions by obtaining LCD to get a single fraction on both sides of the equation and then equate numerators.
4. Solve the resulting linear or quadratic equation
5. Check your answers for extraneous roots

Example 1:

Solve: $\frac{x}{4}-\frac{7}{x}=3$

M3201 - Section 4.5
Example 2: (ex. 2, p. 254)
Solve for x :

$$
\frac{18}{x^{2}-3 x}=\frac{6}{x-3}-\frac{5}{x}
$$

Example 4:

Solve: $\quad \frac{3 x-5}{x^{2}+4 x+3}+\frac{2 x+2}{x+3}=\frac{x-3}{x+1}$

Besides factoring, we may have to use the Quadratic Formula to solve for the variable in a trinomial.

$$
\text { Recall: } \begin{array}{r}
\text { Quadratic Formula: } \\
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
\hline
\end{array}
$$

Example 3:
Solve for $\mathrm{x}: \quad 3 x^{2}+4 x-6=0$

M3201 - Section 4.5

Your Turn:

1. Solve for $\mathrm{x}: \quad \frac{2}{a+2}-\frac{a^{2}+4}{a^{2}-4}=\frac{a}{2-a}$

Practice Questions:
p. 258, Section 4.5 Worksheet

Part 2: Word Problems

Example 1:

The sum of a number and its reciprocal is $\frac{5}{2}$. Determine the
mber. number.

Example 2:

One positive integer is 5 more than the other. When the reciprocal of the larger number is subtracted from the reciprocal of the smaller the result is $\frac{5}{14}$. Find the two integers.

Example 3:

Sherry can mow a lawn in 5 hours. Terry can mow the same lawn in 4 hours. Determine how long it would take to mow the lawn if Sherry and Terry worked together.

	Time to mow lawn	Fraction of lawn mowed in 1 hour
Sherry		
Terry		
Together		

Example 4:

Gerard takes 5 hours longer than Hubert to assemble a play set. If Gerard and Hubert worked together, they could assemble the play set in 6 hours. Determine how long it takes each person to assemble the play set if they worked alone.

	Time	Fraction of time in 1 hour
Gerard		
Hubert		
Together		

Example 5:

A skiing club is going on a skiing trip that costs $\$ 1500$ total for bussing. If 10 non-members are allowed to go, the price per person drops by $\$ 5$. If x represents the number of members and the situation is modelled by

$$
\frac{1500}{x}-\frac{1500}{x+10}=5
$$

algebraically determine how many members there are.

Example 6:

Priddle Inc. is having a Christmas party for all of its employees. Initially, all employees agree to attend. The cost of the catering is $\$ 1800$, which is to be divided amongst all people who attend the party. At the last minute, 30 people decide not to come, increasing the cost per person by $\$ 2$. If x represents the number of employees and the situation is modelled by

$$
\frac{1800}{x-30}-\frac{1800}{x}=2
$$

algebraically determine the number of people who are employed at Priddle Inc.

Practice Questions:

p. 259, \#10, 11, 12 + Worksheet

