Mathematics 3201 Unit 5: Polynomial Functions and 4.5 Solving Rational Equations Review

Review					
Section 1: Multiple Choice.		1	Name:		
1. What is the leading coeffic	cient of the polynomial: $y =$	$-2x^2 + 5x - 3?$		1	
A) –3	B) -2	C) 5	D) <i>x</i>		
2. What is the end behaviour	of the graph of: $y = -3x^3 +$	4x + 5?		2	
A) Q2 to Q1	B) Q3 to Q1	C) Q2 to Q4	D) Q3 to Q4		
3. What is the maximum num	nber of turning points a cubi	c polynomial have?		3	
A) 0	B) 1	C) 2	D) 3		
4. What is the domain of $y =$	3x - 1?			4	
A) $\left\{ x \mid x \ge -1, x \in R \right\}$	B) $\left\{ x \mid x \in R \right\}$	C) $\left\{ y \mid y \ge -1, y \in R \right\}$	D) $\left\{ y \mid y \in R \right\}$		
5. What is the range of the fu	unction graphed below?	y 4 4		5	
A) $\left\{ x \mid x \ge 3, x \in R \right\}$					
$\mathbf{B}) \left\{ x \middle x \le 3, x \in R \right\}$		-21_1 = 1 2 3 4 5	_678 ×		
C) $\{y \mid y \ge 2, y \in R\}$					
D) $\{y \mid y \le 2, y \in R\}$					
6. What is the equation of the	e following graph?	у Ь - ^		6	
A) $y = x^3 + 2x - 1$					
B) $y = -x^3 + 2x - 1$					
C) $y = x^3 + 2x + 1$		-5 -4 -3 -2 -1 -1 1 2	3 4 5 X		
D) $y = x^3 + 2x + 1$					
7. What is the <i>y</i> -intercept of	$y = 2x^2 + 3x - 5?$			7	
A) -5	B) 2	C) 3	D) none		
8. What is the constant term	for the following graph?			8	
A) –1					
B) 0					
C) 1					
D) 3					
9. From which quadrants doe	es the graph of $y = -4x^2 - 7$ e	extend?		9	
A) Q2 to Q1	B) Q3 to Q4	C) Q3 to Q1	D) Q2 to Q4		

- 10. What is the degree of $y = 2x^3 4x^2 + 7x 3$?
 - A) 0 **B**) 1 C) 2 D) 3

11. What is the maximum number of *x*-intercepts for y = 3x - 5? 11. ____ A) 0 **B**) 1 C) 2 D) 3

- 12. Which function passes through the point (2, -10)?
 - A) $f(x) = -x^3 + x 4$ B) $f(x) = -x^3 + x 10$ C) $f(x) = x^3 + x - 4$ D) $f(x) = x^3 + x - 10$

13. Given the scatter plot and the curve of best fit of the polynomial f(x), 13. ____ what is the value of f(30)?

Section 2: **Constructed Response.**

1. Determine the following characteristics of each function:

Characteristics	$f(x) = 3x^3 - 4x^2 + 2x - 1$	$f(x) = -2(x-3)^2 + 3$
Number of possible <i>x</i> -intercepts		
y-intercept		
Domain		
Range		
Number of possible turning points		
End behaviour		

2. Sketch a possible graph of polynomial functions that satisfy each set of characteristics:

A) Quadratic, one *x*-intercept, negative Leading coefficient

B) Two turning points (one in Q2 and Q4), positive leading coefficient and constant term of -4

10. ____

12. ____

C) Degree 2, one turning point which is a maximum, constant term of 3

D) Degree 1, positive leading coefficient and *y*-intercept of -2

3. Determine the following characteristics for the following polynomials:

Characteristics	y 10 10 10 10 10 10 10 10 10 10	y 10 10 10 10 10 10 10 10 10 10
Degree		
Sign of Leading Coefficient		
Constant term of function		
End behaviour		
y-intercept		
Domain		
Range		

4. Write an equation for a polynomial function that satisfies each set of characteristics:

A) Degree 1, decreasing function, <i>y</i> -intercept of -2	B) One turning point, max value, <i>y</i> -intercept of 3
C) Cubic extending from Q2 to Q4, y-intercept of 0	D) Extending from Q2 to Q1, y-intercept of 5, no x-intercept or turning point

5. Sketch two possible graphs that are different, yet both are cubic functions with positive leading coefficients and negative *y*-intercepts. Explain why the graphs you sketched are different.

6. The table below shows the birthrate in Canada per 1000 people.

Number of years after 1975	0	5	10	15	16	17	18	19
Birthrate (per 1000 people)	15.3	15.5	14.9	14.3	14.1	13.6	13.3	12.9

When a linear regression is performed on this data, the equation y = -0.13x + 15.81 is obtained.

- a) What is does the -0.13 represent in this equation?
- b) Assuming this trend continues, what will the birthrate in Canada be in 2020?
- c) In what year will the birthrate be 11.2?
- 7. Two hoses together can fill a pool in 2 hours. If only hose A is used, the pool fills in 3 hours. How long would it take to fill the pool if only hose B is used?