Mathematics 3201
 Unit 5: Polynomial Functions and 4.5 Solving Rational Equations Review

Name: \qquad

Section 1: Multiple Choice.

1. What is the leading coefficient of the polynomial: $y=-2 x^{2}+5 x-3$?
A) -3
B) -2
C) 5
D) x
2. What is the end behaviour of the graph of: $y=-3 x^{3}+4 x+5$?
3. \qquad
A) Q2 to Q1
B) Q3 to Q1
C) Q 2 to Q 4
D) Q 3 to Q 4
4. What is the maximum number of turning points a cubic polynomial have?
5. \qquad
A) 0
B) 1
C) 2
D) 3
6. What is the domain of $y=3 x-1$?
7. \qquad
A) $\{x \mid x \geq-1, x \in R\}$
B) $\{x \mid x \in R\}$
C) $\{y \mid y \geq-1, y \in R\}$
D) $\{y \mid y \in R\}$
8. What is the range of the function graphed below?
A) $\{x \mid x \geq 3, x \in R\}$
B) $\{x \mid x \leq 3, x \in R\}$
C) $\{y \mid y \geq 2, y \in R\}$
D) $\{y \mid y \leq 2, y \in R\}$

9. \qquad
10. \qquad
A) $y=x^{3}+2 x-1$
B) $y=-x^{3}+2 x-1$
C) $y=x^{3}+2 x+1$
D) $y=x^{3}+2 x+1$

11. What is the y-intercept of $y=2 x^{2}+3 x-5$? \qquad
A) -5
B) 2
C) 3
D) none
12. What is the constant term for the following graph?
A) $\quad-1$
B) 0
C) 1
D) 3

13. From which quadrants does the graph of $y=-4 x^{2}-7$ extend?
14. \qquad
15. \qquad
A) Q2 to Q1
B) Q 3 to Q 4
C) Q3 to Q1
D) Q 2 to Q 4
16. What is the degree of $y=2 x^{3}-4 x^{2}+7 x-3$? \qquad
A) 0
B) 1
C) 2
D) 3
17. What is the maximum number of x-intercepts for $y=3 x-5$?
18. \qquad
A) 0
B) 1
C) 2
D) 3
19. Which function passes through the point $(2,-10)$?
20. \qquad
A) $f(x)=-x^{3}+x-4$
B) $f(x)=-x^{3}+x-10$
C) $f(x)=x^{3}+x-4$
D) $f(x)=x^{3}+x-10$
21. Given the scatter plot and the curve of best fit of the polynomial $f(x)$, \qquad what is the value of $f(30)$?

A) 13
B) 32
C) 47
D) 58

Section 2: Constructed Response.

1. Determine the following characteristics of each function:

Characteristics	$f(x)=3 x^{3}-4 x^{2}+2 x-1$	$f(x)=-2(x-3)^{2}+3$
Number of possible x-intercepts		
y-intercept		
Domain		
Range		
Number of possible turning points		
End behaviour		

2. Sketch a possible graph of polynomial functions that satisfy each set of characteristics:
A) Quadratic, one x-intercept, negative Leading coefficient
B) Two turning points (one in Q2 and Q4), positive leading coefficient and constant term of -4
C) Degree 2, one turning point which is a maximum, constant term of 3
D) Degree 1, positive leading coefficient and y-intercept of -2
3. Determine the following characteristics for the following polynomials:

Characteristics		
Degree		
Sign of Leading Coefficient		
Constant term of function		
End behaviour		
y-intercept		
Domain		
Range		

4. Write an equation for a polynomial function that satisfies each set of characteristics:

A) Degree 1, decreasing function, y-intercept of -2	B) One turning point, max value, y-intercept of 3
C) Cubic extending from Q2 to Q4, y-intercept of 0	D)Extending from Q2 to Q1, y-intercept of 5, no x-intercept or turning point

5. Sketch two possible graphs that are different, yet both are cubic functions with positive leading coefficients and negative y-intercepts. Explain why the graphs you sketched are different.
6. The table below shows the birthrate in Canada per 1000 people.

Number of years after 1975	0	5	10	15	16	17	18	19
Birthrate (per 1000 people)	15.3	15.5	14.9	14.3	14.1	13.6	13.3	12.9

When a linear regression is performed on this data, the equation $y=-0.13 x+15.81$ is obtained.
a) What is does the -0.13 represent in this equation?
b) Assuming this trend continues, what will the birthrate in Canada be in 2020?
c) In what year will the birthrate be 11.2 ?
7. Two hoses together can fill a pool in 2 hours. If only hose A is used, the pool fills in 3 hours. How long would it take to fill the pool if only hose B is used?

