UNIT 6 Exponential Functions

6.1/6.2: Characteristics of Exponential Functions

We will explore exponential functions of the form: $y=a(b)^{x}$ where $b>1$ or $0<b<1$ and $a>0$

Investigation:

1. a. Complete the table of values and sketch the graph of: $y=2^{x}$

x	y
-3	
-2	
-1	
0	
1	
2	
3	

b. Identify the characteristics.

c. Compare the pattern in the table of values with the b-value.

All exponential functions of the form $y=a(b)^{x}$ gets very close to the x-axis but will never touch or cross it.
This line that the graph gets close to is called the horizontal asymptote and has an equation of $\mathrm{y}=0$.
2. a. Complete the table of values and sketch the graph of: $y=\left(\frac{1}{2}\right)^{x}$

x	y
-3	
-2	
-1	
0	
1	
2	
3	

b. Identify the characteristics.

c. Compare the pattern in the table of values with the b-value.
3. How are the graphs of $y=2^{x}$ and $y=\left(\frac{1}{2}\right)^{x}$ alike and how are they
different?

M3201 - Section 6.1 and 6.2

4. Given the following graphs in the form: $y=a(b)^{x}$

a. Complete the table.

	a	b	y -intercept	increasing/ decreasing
$y=2^{x}$				
$y=4^{x}$				
$y=6(4)^{x}$				
$y=\left(\frac{1}{2}\right)^{x}$				
$y=\left(\frac{1}{4}\right)^{x}$				
$y=\left(\frac{1}{4}\right)^{x}$				

b. Compare the a-value with the y-intercept.

What conclusion can you make?
c. Compare the \mathbf{b}-value with the shape of the graph. What conclusion can you make?

Characteristics of Exponential Functions of the Form:

$$
y=a(b)^{x} \text { where } a>0 \text { and } 0<b<1 \text { or } b>1
$$

- the number of x-intercepts: none
- y -intercept $=\mathrm{a}$
- end behaviour: extends from Q2 to Q1
- equation of asymptote: $y=0$
- domain: $x \in R$
- range: $y>0$
- as x-values increase by 1 , the y-values will increase/ decrease by a constant ratio equal to the b-value
- if $b>1 \quad$ OR if $0<b<1$ increasing from Q1 to Q1 decreasing from Q2 to Q1

1. What will happen if $b=1$?

x					
y					

2. What will happen if $b=0$?

x					
y					

3. What will happen if $b<0$?

x					
y					

Journal Question:

How are the functions $y=x^{2}$ and $y=2^{x}$ alike/different?

Example 1:

State the characteristics of each exponential function.
a) $y=9\left(\frac{2}{3}\right)^{x}$
b) $y=\frac{1}{2}(3)^{x}$

x-intercept
y-intercept
end behaviour \qquad
inc/dec
Equation of Asymptote \qquad
Domain \qquad
Range

c) $y=e^{x}$

Example 2: (Ex. 3, p. 343)
Which exponential function matches each graph below? Explain why.
i) $y=3(0.2)^{x}$
ii) $y=4(3)^{x}$
iii) $y=4(0.5)^{x}$
iv) $y=2(4)^{x}$

\qquad
a)

c)

b)

d)

YOUR TURN: p. 345

Which exponential function matches each graph below? Explain why.
i) $y=(3)^{x}$
ii) $y=\frac{1}{3}(3)^{x}$
a)

c)

iii) $y=3\left(\frac{1}{3}\right)^{x}$
iv) $y=\left(\frac{1}{3}\right)^{x}$
b)

d)

Practice:
p. 347-350, \#3, 4abcd, 5abcd, 9, 11, 12ace, 13, 15

