M3201 - Section 6.3
Section 6.3: Solving Exponential Equations

Examples:

a) $\left(\frac{2}{3}\right)^{0}$
b) $5 x^{0}$
b) $5 x$
c) $\left(5 x^{2} y^{3}\right)^{0}$

$$
b^{0}=1
$$

1. Zero Exponent:

\square
2. Negative Exponent:
a) 3^{-2}
b) $\left(\frac{3}{4}\right)^{-2}$
c) $\frac{1}{x^{-2}}$

$$
b^{-x}=\frac{1}{b^{x}}
$$

3. Product Rule:
a) $2^{2} \times 2^{3}$
b) $x^{4} \cdot x^{2}$
c) $5 x^{2} y^{4}\left(3 x^{3} y^{2}\right)$

$$
b^{x} \cdot b^{y}=b^{x+y}
$$

M3201 - Section 6.3

Exponent Laws

Examples:

4. Quotient Rule:

a) $\frac{x^{5}}{x^{3}}$
b) $\frac{12 x^{2}}{4 x^{-3}}$
c) $\frac{16 x^{3} y^{7}}{8 x^{5} y^{4}}$

$$
\frac{b^{x}}{b^{y}}=b^{x-y}
$$

5. Power Rule:
a) $\left(2^{5}\right)^{2}$
b) $\left(2 x^{-2}\right)^{3}$
c) $\left(\frac{1}{3 x^{5}}\right)^{-2}$

$$
\left(b^{x}\right)^{y}=b^{x y}
$$

6. Rational Exponents:
a) $9^{\frac{1}{2}}$
b) $64^{\frac{2}{3}}$
c) $\left[\left(\frac{16}{9}\right)^{-3}\right]^{\frac{1}{2}}$

$$
\begin{aligned}
b^{\frac{1}{n}} & =\sqrt[n]{b} \\
b^{\frac{m}{n}} & =(\sqrt[n]{b})^{m} \\
& =\sqrt[n]{b^{m}}
\end{aligned}
$$

7. Common Base Rule:
a) $2^{x}=2^{3}$
b) $5^{x+3}=5^{4}$

$$
b^{x}=b^{y} \text { if and only if } x=y
$$

Example 1:

Express each of the following as a power with a base of 2.
a) 8
b) $\frac{1}{16}$
c) 8^{-2}
d) $8^{\frac{2}{3}}(\sqrt{16})^{3}$

Your Turn
Express each of the following as a power with a base of 3.
a) 27^{2}
b) $\left(\frac{1}{9}\right)^{4}$
c) $27^{\frac{2}{3}}(\sqrt[3]{81})^{6}$

To Solve Exponential Equations:

- write both sides of the equation with the same base
- equate the exponents

Example 2:
Solve for $\mathrm{x}: \quad 3^{x}=9$

The solution for the equation $3^{x}=9$ can also be depicted graphically. We treat each side of the equation as 2 separate functions. The x-value of the point of intersection is the solution to the equation, $x=2$.

Example 3:

a) Use the graph to determine the solution for $3^{x+1}=9$.
b) Verify the solution algebraically.

Example 4:
Solve each equation algebraically:
a) $2^{x-1}=16$

Rewrite each equation with the same base and equate the exponents.
b) $\quad 4^{2 x}=8^{2 x-3}$
c) $4\left(3^{x+2}\right)=36$
d) $8^{3 x-4}+7=71$

Your Turn:
Algebraically determine the solution for each of the following equations:
a) $3^{2 x+1}=3^{x+2}$
b) $4^{3 x+5}=2^{4 x-3}$

M3201 - Section 6.3
c) $3(2)^{3 x-2}=48$
d) $9\left(2^{3 x+5}\right)-8=28$

Example 5:

Solve each equation algebraically:
a) $\quad 5^{x}=\frac{1}{125}$
b) $(32)^{x-2}=\left(\frac{1}{4}\right)^{5 x-3}$

$$
(32)^{x-2}=\left(\frac{1}{4}\right)^{5 x-3}
$$

Fraction in the base
= Negative Exponent

Your Turn:
a) $\left(\frac{1}{8}\right)^{x-3}=16^{2 x+1}$
b) $\quad 2(4)^{2 x}=\frac{1}{32}$

M3201 - Section 6.3

Example 6:
Solve each equation algebraically:
a) $\sqrt{8}=2^{3 x-4}$
b) $5^{x+2}=\sqrt[3]{25}$

Your Turn:
a) $27^{2 x-1}=\sqrt[3]{3^{2 x}}$
b) $\sqrt{3^{x}}=9^{2 x+1}$

M3201 - Section 6.3

Example 7:

Solve each equation algebraically:
a) $\quad 9^{x-1} \times 81^{2 x-1}=27^{3 x-2}$
b) $\frac{64^{x-1}}{16^{2 x+2}}=2^{x-2}$
c) $5^{x^{2}+2 x}=125$

M3201 - Section 6.3
Your Turn:
a) $4^{3 x+2} \times 32^{x-2}=8^{3 x-4}$
b) $\frac{125^{2 x+1}}{625^{x+2}}=3125^{x+2}$

Example 8: Identify and correct the error.

$$
\begin{aligned}
& \sqrt{5}=25^{3 x+4} \\
& 5^{\frac{1}{2}}=5^{2(3 x+4)} \\
& 5^{\frac{1}{2}}=5^{6 x+4} \\
& \frac{1}{2}=6 x+4 \\
& 2=12 x+8 \\
& -6=12 x \\
& -\frac{1}{2}=x
\end{aligned}
$$

Practice:

p. 361, \#2abcd, 4cdef, 5abc, 7bdf

Recall that an exponential expression arises when a quantity changes by the same factor for each unit of time.

For example,

- a population doubles every year;
- a bank account increases by 0.1% each month;
- a mass of radioactive substance decreases by $1 / 2$ every 462 years.

The half-life exponential function is given by the equation:

$$
A(t)=A_{0}\left(\frac{1}{2}\right)^{\frac{t}{h}}
$$

where $\quad A(t)$ is the value after time, t
A_{0} is the initial value
h is the half-life

The doubling exponential function is given by the equation:

$$
A(t)=A_{0}(2)^{\frac{t}{d}}
$$

where $\quad A(t)$ is the value after time, t
A_{0} is the initial value
d is the doubling time

Example 9:

The half-life of a radioactive isotope is 30 hours. The amount of radioactive isotope $A(t)$, at time t, can be modelled by the function:

$$
A(t)=A_{0}\left(\frac{1}{2}\right)^{\frac{t}{h}}
$$

Algebraically determine how long it will take for a sample of 1792 mg to decay to 56 mg .

Solution:

Example 10:

The population of trout growing in a lake can be modeled by the function $P(t)=200(2)^{\frac{t}{5}}$ where $P(t)$ represents the number of trout and t represents the time in years after the initial count. How long will it take for there to be 6400 trout?

Note:

- the value of 200 represents the initial number of trout
- the number of trout doubles every 5 years

Solution:

Your Turn:
The half life of Radon 222 is 92 hours. From an initial sample of 48 g , how long would it take to decay to 6 g ?

$$
A(t)=A_{0}\left(\frac{1}{2}\right)^{\frac{t}{h}}
$$

Example 11: (ex. 4, p. 359)
Solve:

$$
2^{x+1}=5^{x-1}
$$

Since neither base can be written as a power of the other, we can't equate the exponents. We will learn how to solve this algebraically in Unit 7. For now, we will solve by using graphing technology.

$$
y_{1}=2^{(x+1)} \quad y_{2}=5^{(x-1)}
$$

Solution: $x \sim 2.5$

Practice:
p. 363-365, \#11a, 15, 16b

+ worksheet

