Section 6.3: Solving Exponential Equations

Exponent Laws	Examples:		
1. Zero Exponent:	a) $\left(\frac{2}{3}\right)^0$	b) 5 <i>x</i> ⁰	C) $(5x^2y^3)^0$
$b^0 = 1$			
2. Negative Exponent:	a) 3 ⁻²	b) $\left(\frac{3}{4}\right)^{-2}$	c) $\frac{1}{r^{-2}}$
$b^{-x} = \frac{1}{b^x}$		(4)	л

3. Product Rule:

a) $2^2 \times 2^3$ b) $x^4 \cdot x^2$ c) $5x^2y^4(3x^3y^2)$

$$b^x \cdot b^y = b^{x+y}$$

Exponent Laws	Examples:		
4. Quotient Rule: $\frac{b^{x}}{b^{y}} = b^{x-y}$	a) $\frac{x^5}{x^3}$	b) $\frac{12x^2}{4x^{-3}}$	c) $\frac{16x^3y^7}{8x^5y^4}$
5. Power Rule: $(b^x)^y = b^{xy}$	a) $(2^5)^2$	b) $(2x^{-2})^3$	c) $\left(\frac{1}{3x^5}\right)^{-2}$
6. Rational Exponents: $b^{\frac{1}{n}} = \sqrt[n]{b}$ $b^{\frac{m}{n}} = \left(\sqrt[n]{b}\right)^{m}$ $= \sqrt[n]{b^{m}}$	a) 9 ¹	b) 64 ^{2/3}	c) $\left[\left(\frac{16}{9}\right)^{-3}\right]^{\frac{1}{2}}$

7. Common Base Rule: a) $2^{x} = 2^{3}$ b) $5^{x+3} = 5^{4}$

$$b^x = b^y$$
 if and only if $x = y$

Example 1:

Express each of the following as a power with a base of 2.

a) 8 b)
$$\frac{1}{16}$$
 c) 8^{-2} d) $8^{\frac{2}{3}} (\sqrt{16})^{3}$

Your Turn

Express each of the following as a power with a base of 3.

a)
$$27^2$$
 b) $\left(\frac{1}{9}\right)^4$ c) $27^{\frac{2}{3}} \left(\sqrt[3]{81}\right)^6$

To Solve Exponential Equations:

- write both sides of the equation with the same base
- equate the exponents

Example 2:

Solve for x: $3^x = 9$

The solution for the equation $3^x = 9$ can also be depicted graphically. We treat each side of the equation as 2 separate functions. The x-value of the point of intersection is the solution to the equation, x = 2.

Example 3:

a) Use the graph to determine the solution for $3^{x+1} = 9$.

b) Verify the solution algebraically.

Example 4:

Solve each equation algebraically:

a)
$$2^{x-1} = 16$$

Rewrite each equation with the same base and equate the exponents.

b)
$$4^{2x} = 8^{2x-3}$$

c)
$$4(3^{x+2}) = 36$$
 d) $8^{3x-4} + 7 = 71$

Your Turn:

Algebraically determine the solution for each of the following equations:

a)
$$3^{2x+1} = 3^{x+2}$$
 b) $4^{3x+5} = 2^{4x-3}$

c)
$$3(2)^{3x-2} = 48$$
 d) $9(2^{3x+5}) - 8 = 28$

Example 5:

Solve each equation algebraically:

a)
$$5^x = \frac{1}{125}$$

b)
$$(32)^{x-2} = \left(\frac{1}{4}\right)^{5x-3}$$

a)
$$\left(\frac{1}{8}\right)^{x-3} = 16^{2x+1}$$
 b) $2(4)^{2x} = \frac{1}{32}$

Example 6:

Solve each equation algebraically:

a)
$$\sqrt{8} = 2^{3x-4}$$

Radical = Fractional Exponent

b)
$$5^{x+2} = \sqrt[3]{25}$$

Your Turn:

a)
$$27^{2x-1} = \sqrt[3]{3^{2x}}$$
 b) $\sqrt{3^x} = 9^{2x+1}$

Example 7:

Solve each equation algebraically:

a)
$$9^{x-1} \times 81^{2x-1} = 27^{3x-2}$$
 b)

 $) \frac{64^{x-1}}{16^{2x+2}} = 2^{x-2}$

c)
$$5^{x^2+2x} = 125$$

M3201 - Section 6.3

Your Turn:

a)
$$4^{3x+2} \times 32^{x-2} = 8^{3x-4}$$
 b) $\frac{125^{2x+1}}{625^{x+2}} = 3125^{x+2}$

Example 8: Identify and correct the error.

$$\sqrt{5} = 25^{3x+4}$$

$$5^{\frac{1}{2}} = 5^{2(3x+4)}$$

$$5^{\frac{1}{2}} = 5^{6x+4}$$

$$\frac{1}{2} = 6x + 4$$

$$2 = 12x + 8$$

$$-6 = 12x$$

$$-\frac{1}{2} = x$$

Practice: p. 361, #2abcd, 4cdef, 5abc, 7bdf

Recall that an exponential expression arises when a quantity changes by the same factor for each unit of time.

For example,

- a population doubles every year;
- a bank account increases by 0.1% each month;
- a mass of radioactive substance decreases by 1/2 every 462 years.

The *half-life* exponential function is given by the equation:

$$A(t) = A_0 \left(\frac{1}{2}\right)^{\frac{t}{h}}$$

where A(t) is the value after time, t

 A_0 is the initial value

h is the half-life

The *doubling* exponential function is given by the equation:

$$A(t) = A_0 \left(2\right)^{\frac{t}{d}}$$

where

A(t) is the value after time, t

- A_0 is the initial value
- *d* is the **doubling time**

Example 9:

The half-life of a radioactive isotope is 30 hours. The amount of radioactive isotope A(t), at time t, can be modelled by the function:

$$A(t) = A_0 \left(\frac{1}{2}\right)^{\frac{t}{h}}$$

Algebraically determine how long it will take for a sample of 1792 mg to decay to 56 mg.

Solution:

Example 10:

The population of trout growing in a lake can be modeled

by the function $P(t) = 200(2)^{\frac{1}{5}}$ where P(t) represents the

number of trout and *t* represents the time in years after the initial count. How long will it take for there to be 6400 trout?

Note:

- the value of 200 represents the initial number of trout
- the number of trout doubles every 5 years

Solution:

Your Turn:

The half life of Radon 222 is 92 hours. From an initial sample of 48g, how long would it take to decay to 6g?

$$A(t) = A_0 \left(\frac{1}{2}\right)^{\frac{t}{h}}$$

Example 11: (ex. 4, p. 359)

Solve:

$$2^{x+1} = 5^{x-1}$$

Since neither base can be written as a power of the other, we can't equate the exponents. We will learn how to solve this algebraically in Unit 7. For now, we will solve by using graphing technology.

$$y_{1} = 2^{(x+1)} \quad y_{2} = 5^{(x-1)}$$

Solution: x ~ 2.5
$$y_{1} = 2^{(x+1)} \quad y_{2} = 5^{(x-1)}$$

Solution: x ~ 2.5
$$y_{1} = 2^{x+1} \quad y_{2} = 5^{x-1}$$

Practice:
p. 363 - 365, #11a, 15, 16b
+ worksheet