Section 6.5: Financial Applications Involving Exponential Functions

1. Simple Interest:

Simple interest is calculated only in terms of the original amount invested, not on the accumulated interest.

Simple Interest Formula: \square
where $\quad \mathrm{P}$ is the principal amount
t is the time in years
r is the interest rate per annum (as a decimal)
NOTE: A is the sum of the principal (P) and the accumulated interest (Prt)

Example 1:

Kyle invested his summer earnings of \$5000.00 at 8\% simple interest, paid annually.
a) Create a table of values and graph the growth of the investment for 6 years using time, in years, as the domain and the value of the investment as the range.

Time (years)	Value of Investment (\$)
0	
1	
2	
3	
4	
5	
6	

M3201 - Section 6.5

a) What does the shape of the graph tell you about the type of growth?

b) Why is the data discrete?
c) What do the y-intercept and slope represent for the investment?
d) What is the value of the investment after 10 years?
e) How much interest was earned after 10 years?

2. Compound Interest:

Compound interest is determined by applying the interest rate to the sum of the principal and any accumulated interest.

Compound Interest Formula: $\quad A=P(1+i)^{n}$
where $\quad A$ is the future value
P is the principal amount
i is the interest rate per compounding period (expressed as a decimal)
t is the time in years
n is the number of compounding periods n is NOT the number of years!

Refer to previous example of $\$ 5000.00(P)$ in a savings account earning an annual interest of 8%.

Time (years)	Amount of Annual Interest	Value of Investment (\$)
0		
1		
2		
3		

NOTE: The accumulated interest and the value of the investment do not grow by a constant amount as they do with simple interest.

An exponential regression to model the investment would result in the equation: $y=5000(1.08)^{x}$

Note how this compares to: $A=P(1+i)^{n}$.

Investments can also have daily, weekly, monthly, quarterly, semi-annually, or annually compounding periods.

Compounding Period	Number of Times Interest is Paid	Interest Rate per Compounding Period, i
Daily	365 times per year	$i=\frac{\text { annual rate }}{365}$
Weekly	52 times per year	$i=\frac{\text { annual rate }}{52}$
Bi-Weekly	26 times per year	$i=\frac{\text { annual rate }}{26}$
Semi-monthly	24 times per year	$i=\frac{\text { annual rate }}{24}$
Monthly	12 times per year	$i=\frac{\text { annual rate }}{12}$
Quarterly	4 times per year	$i=\frac{\text { annual rate }}{4}$
Semi- annually	2 times per year	$i=\frac{\text { annual rate }}{2}$
Annually	1 time per year	$i=\frac{\text { annual rate }}{1}$

For example, if $\$ 5000$ is invested at 6% compounded monthly,

$$
i=\frac{\text { annual rate }}{12}=\frac{0.06}{12}=0.005
$$

The compound interest formula is defined as:

$$
A=5000(1.005)^{n}
$$

where n is the number of months, NOT the number of years

M3201 - Section 6.5

Example 2: Complete the table if the interest rate is 4.8% per year.

Compounding Period	Number of Times Interest is Paid	Interest Rate per Compounding Period (i)
Bi-Monthly		
Monthly		
Quarterly		
Semi-Annually		
Annually		

Example 3:

If $\$ 5000$ is invested, calculate A (the future value) using $A=P(1+i)^{n}$ for each situation.
a) 11% per year, compounded quarterly for 3 years
b) 6.5% per year, compounded semi-annually for 3 years
c) 15.6% per year, compounded monthly for 2 years

M3201 - Section 6.5

Example 4:

$\$ 3000$ was invested at 6% per year compounded monthly.
a) Write the exponential function in the form: $A=P(1+i)^{n}$
b) What will be the future value of the investment after 4 years?

Example 5:

An automobile that originally costs $\$ 24000$ loses one-fifth of its value each year. What is the value after 6 years?

Example 6:
$\$ 2000$ is invested for 3 years at an annual interest rate of 9% compounded monthly. Lucas solved the following equation:

$$
A=2000(1.0075)^{3}
$$

Correct the error and solve the problem.

Example 7:

Nora is about to invest $\$ 5000$ in an account that pays 6% interest a year compounded monthly for the next 3 years. A different financial institution offers 6.5% interest a year compounded semi-annually for the next 3 years. Write a function that models the growth of Nora's investment for each situation. Should Nora invest her money in this financial institution instead? Explain why or why not.

Practice Questions:

$$
\text { p. } 396-397, \# 10,14
$$

