UNIT 7

Logarithmic Functions

7.1: Characteristics of Logarithmic Functions with Base 10 and Base e Investigation - Part A: The Common Logarithm

1. Complete the table of values for $y=10^{x}$.

$y=10^{x}$	
x	y
-2	
-1	
0	
1	
2	

$x=10^{y}$	
x	y

2. How can you use the table to create a table of values for the new function $x=10^{y}$?
3. Sketch the graph of $x=10^{y}$ on the same axes.
4. How are these two functions related?

What is the connection to the line $y=x$?
5. The equation of the second function, $x=10^{y}$ can be rewritten in another form called logarithmic form:
\qquad
6. Compare the characteristics of both functions:

	Exponential	Logarithmic
Domain		
Range		
y-intercept		
x-intercept		
Increasing/ Decreasing		
End Behaviour		

7. Use graphing technology to graph the following functions and match them with those provided on the graph below.
A. $y=\log _{10} x$
B. $y=4 \log _{10} x$
C. $y=-4 \log _{10} x$ \qquad
D. $y=\frac{1}{4} \log _{10} x$
E. $y=-\frac{1}{4} \log _{10} x$ \qquad

8. What is the effect on the graph of $y=a \log _{10} x$ if $a>0$? $a<0$?
9. Does "a" affect the x-coordinate or the y-coordinate? Is this a vertical or a horizontal transformation?
10. Which point is easily identified from the graph?

Part B: The Natural Logarithm

1. Complete the table of values for $y=e^{x}$ and $x=e^{y}$.

Note: e is an irrational number like π where $\mathrm{e}=2.71828 \ldots y=(2.71828 \ldots)^{x}$

$y=e^{x}$	
x	y
-2	
-1	
0	
1	
2	

$x=e^{y}$	
x	y

2. Sketch the graph of $x=e^{y}$ on the same axes. How does it compare to $y=e^{x}$?
3. The equation of the second function, $x=e^{y}$ can be rewritten in another form called logarithmic form:
\qquad
4. Compare the characteristics of both functions:

	Exponential	Logarithmic
Domain		
Range		
y-intercept		
x-intercept		
Increasing/		
Decreasing		
End Behaviour		

5. How do the characteristics of the function $y=\ln x$ compare to those of $y=\log _{10} x$? (Does it matter if the base is 10 or e?)
6. Match each function below with its graph:
A. $y=-\frac{1}{2} \ln x$
B. $y=2 \ln x$

C. $y=\frac{1}{2} \ln x$ \qquad
D. $y=-2 \ln x$

SUMMARY:
All logarithmic functions of the form $f(x)=a \log x$ and $f(x)=a \ln x$ have the following characteristics:

x- intercept	one (1, 0)
Number of \boldsymbol{y} - intercepts	none
	1. Q4 to Q1 or 2. Q1 to Q4 if a >0 (positive) increasing if a <0 (negative) decreasing
Domain	$\{x / x>0, x \in R\}$
Range	$\{y / y \in R\}$

Example 1: (Ex. 1/2, p. 414/5)
Predict the x-intercept, the number of y-intercepts, the domain and the range, and the end behaviour of the following functions:
a) $y=15 \log x$
b) $y=-4 \ln x$
x-intercept:
y-intercept:
Domain:
Range:
End Behaviour:
x-intercept:
y-intercept:
Domain:
Range:
End Behaviour:

Example 2: (Ex. 3, p. 417)
Which function matches each graph? Provide your reasoning.
A. $y=5(2)^{x}$
B. $y=2(0.1)^{x}$ \qquad
C. $y=6 \log x$
D. $y=-2 \ln x$ \qquad

Practice:

p. 420-425, \#2, 3, 5ace, 8

