Section 7.3 - Laws of Logarithms

1. Product law: $\log_b(m \times n) = \log_b m + \log_b n$

example, $\log_3(9 \times 27) = \log_3 9 + \log_3 27$

2. Quotient Law: $\log_b(m \div n) = \log_b m - \log_b n$

example, $\log_2(256 \div 32) = \log_2 256 - \log_2 32$

Note the similarities between the **laws of logarithms** and the **laws of exponents.**

 $a^n \times a^m = a^{n+m}$

 $a^n \div a^m = a^{n-m}$

 $\left(a^{n}\right)^{m}=a^{nm}$

3. Power Law: $\log_b(m^n) = n \log_b m$

example, $\log_2 4^3 = 3\log_2 4$

X

 \bigstar

M3201 - Section 7.3

Example 1:

Write as a single logarithm, then evaluate.

a) $\log_2 5 + \log_2 6.4$ b) $\log_{12} - \log_{6} 6.4$

c) $\log_3 27^5$ d) $2\log_3 6 + \log_3 0.75$

e)
$$\log_2 \sqrt{80} - \log_2 \sqrt{5}$$
 f) $2\log_3 6 - \frac{1}{2}\log_3 64 + \log_3 2$

M3201 - Section 7.3

Your Turn:

Write as a single logarithm, then evaluate.

a) $\log 12 + \log 2$ b) $\log_5 100 - \log_5 4$

c)
$$\log_3 18 + \log_3 \left(\frac{3}{2}\right)$$
 d) $\log_5 40 - 3\log_5 2$

e)
$$3\log_6(2) + \log_6(27)$$
 f) $\log_5(2.5) + 2\log_5(10) - \log_5(2)$

Example 4: Error Analysis

Simplify: $\log_5 36 + 2\log_5 3$

Student 1: $\log_5 36 + 2\log_5 3$ $\log_5 36 + \log_5 3^2$ $\log_5 36 + \log_5 6$ $\log_5 (36 \times 6)$ $\log_5 324$ Student 2: $\log_5 36 + 2\log_5 3$ $\log_5 36 + \log_5 3^2$ $\log_5 36 + \log_5 9$ $\log_5 (36 \div 9)$ $\log_5 4$

Example 5:

Express log6 as a:

a) sum of two logs.

b) difference of two logs.

Example 6:

What is $4\log A + \log B - 2\log C$ expressed as a single log?

Example 7:

Write an equivalent expression for $\log\left(\frac{A^2B}{C^3}\right)$.

Practice:

p. 446-447, #1 - 7, 10 - 16 + Worksheet