1. Product law: $\quad \log _{b}(m \times n)=\log _{b} m+\log _{b} n$
example, $\quad \log _{3}(9 \times 27)=\log _{3} 9+\log _{3} 27$

$$
\begin{gathered}
\begin{array}{c}
\text { Remember } \\
\text { to evaluate: } \\
\log _{3} 9=y
\end{array} \\
3^{y}=9 \\
3^{y}=3^{2} \\
y=2 \\
\hline
\end{gathered}
$$

2. Quotient Law: $\log _{b}(m \div n)=\log _{b} m-\log _{b} n$
example, $\quad \log _{2}(256 \div 32)=\log _{2} 256-\log _{2} 32$

Note the similarities between the laws of logarithms and the laws of exponents.

$$
\begin{aligned}
& a^{n} \times a^{m}=a^{n+m} \\
& a^{n} \div a^{m}=a^{n-m} \\
& \left(a^{n}\right)^{m}=a^{n m}
\end{aligned}
$$

3. Power Law: $\log _{b}\left(m^{n}\right)=n \log _{b} m$
example, $\log _{2} 4^{3}=3 \log _{2} 4$

M3201 - Section 7.3

## Example 1:

Write as a single logarithm, then evaluate.
a) $\quad \log _{2} 5+\log _{2} 6.4$
b) $\log 12-\log 6$
c) $\quad \log _{3} 27^{5}$
d) $2 \log _{3} 6+\log _{3} 0.75$
e) $\log _{2} \sqrt{80}-\log _{2} \sqrt{5}$
f) $2 \log _{3} 6-\frac{1}{2} \log _{3} 64+\log _{3} 2$

M3201 - Section 7.3

## Your Turn:

Write as a single logarithm, then evaluate.
a) $\log 12+\log 2$
b) $\quad \log _{5} 100-\log _{5} 4$
c) $\log _{3} 18+\log _{3}\left(\frac{3}{2}\right)$
d) $\log _{5} 40-3 \log _{5} 2$
e) $3 \log _{6}(2)+\log _{6}(27)$
f) $\quad \log _{5}(2.5)+2 \log _{5}(10)-\log _{5}(2)$

M3201 - Section 7.3

Example 4: Error Analysis
Simplify: $\log _{5} 36+2 \log _{5} 3$

Student 1: $\log _{5} 36+2 \log _{5} 3$
$\log _{5} 36+\log _{5} 3^{2}$
$\log _{5} 36+\log _{5} 6$
$\log _{5}(36 \times 6)$
$\log _{5} 324$

Student 2: $\log _{5} 36+2 \log _{5} 3$
$\log _{5} 36+\log _{5} 3^{2}$
$\log _{5} 36+\log _{5} 9$
$\log _{5}(36 \div 9)$
$\log _{5} 4$

Example 5:
Express $\log 6$ as a:
a) sum of two logs.
b) difference of two logs.

Example 6:
What is $4 \log A+\log B-2 \log C$ expressed as a single log?

Example 7:
Write an equivalent expression for $\log \left(\frac{A^{2} B}{C^{3}}\right)$.

Practice:
p. 446-447, \#1-7, 10-16 + Worksheet

