Section 7.4: Solving Exponential Equations using Logarithms

Recall in Unit 6 we solved exponential equations by writing with the same base and then equating the exponents.

For example,
$$2^x = 8$$

 $2^x = 2^3$
 $x = 3$

The same equation can be solved using logarithms.

You can solve an exponential equation by taking the logarithms of both sides of the equation.

For example,
$$2^{x} = 8$$

 $\log 2^{x} = \log 8$ (Take the logarithm of both sides)
 $x \log 2 = \log 8$ (Apply the power law)
 $x = \frac{\log 8}{\log 2}$
 $x = 3$

Example 1: Solve the following, $2^x = 7$

NOTE: This example cannot be solved by writing with the same base. It has to be solved using the "new" way!

ঠ

M3201- Section 7.4

Example 2:

- a) Evaluate each of the following:
 - i) $\log_2 8$ ii) $\log_2 16$
- b) Based on those answers, estimate $\log_2 9$.
- c) Evaluate: $log_2 9$

Example 3: Evaluate $\log_2 100$ to three decimal places.

 \mathbf{X}

☆

 \mathbf{x}

Example 4: Evaluate to 3 decimal places.

a) $\log_4 120$ b) $\log_3 15$

Example 5: Solve each of the following

a)
$$2^{x+1} = 32$$

i) Using common bases

ii) Using Logarithms

$$\bigstar$$
 b) $3^{x-1} = 20$ c) $4(3)^x = 24$

d)
$$2^{x-1} = 3^{x+1}$$

Your Turn:

Solve for x: $2^{x+1} = 5^{x-1}$

Practice:

p. 455 - 458, #1ace,2ab,3ab,5ab,6ac,16

 \mathbf{x}

M3201- Section 7.4

Word Problems:

In the last unit we completed questions involving half-life, doubling life, compound interest, and depreciation where we could solve the exponential equations by writing with the same base. We will now revisit those questions with one difference - we will not be able to write with the same base therefore we will have to take the log of both sides to finish solving the problem.

Example 6:

If a \$1000 deposit is made at a bank that pays 12% per year, compounded annually, how long will it take for the investment to reach \$2000.

Example 7: (ex. 3, p. 451)

Jahmal works in a laboratory that uses radioactive substances. The laboratory received a shipment of 500 g of radioactive radon-222. Only 13.417 g of the radon-222 remained 19.0 days later. Determine the half-life of radon-222 algebraically using logarithms.

Recall: The half-life equation is: $A = A_o \left(\frac{1}{2}\right)^{\frac{r}{h}}$

Example 8: Error Analysis #8, p. 457

Dave thought that he could also solve the exponential equation in Example 1 by taking the logarithm of each side in the first step. However, he made an error in his solution. Correct Dave's error, and complete his solution.

Dave's Solution

$A = P(1 + i)^n$	I substituted the given values into the compound interest
P = 3215	formula.
i = 0.024	
A = 5000	
The number of compounding	
periods, <i>n</i> , is unknown.	
$5000 = 3215(1.024)^n$	
$\log 5000 = \log (3215(1.024)^n)$	I took the common logarithm of each side of the equation.
$\log 5000 = n \log (3215(1.024))$	I used the power law of logarithms to rewrite the equation.
$n = \frac{\log 5000}{\log (3215(1.024))}$	I isolated <i>n</i> .
n = 1.051	
It will take 2 years for the	The interest is compounded annually, so I rounded up to
balance to reach \$5000.	2 years.
	This answer is different from my first answer, and it seems

much too small.

Practice:

p. 457, #10, 11, 12, 13 + Worksheet

7