Section 7.4: Solving Exponential Equations using Logarithms

Recall in Unit 6 we solved exponential equations by writing with the same base and then equating the exponents.

For example, $\quad 2^{x}=8$

$$
\begin{aligned}
& 2^{x}=2^{3} \\
& x=3
\end{aligned}
$$

The same equation can be solved using logarithms.

You can solve an exponential equation by taking the logarithms of both sides of the equation.

For example, $\quad 2^{x}=8$

$$
\begin{array}{ll}
\log 2^{x}=\log 8 & \text { (Take the logarithm of both sides) } \\
x \log 2=\log 8 & \text { (Apply the power law) } \\
x=\frac{\log 8}{\log 2} & \\
x=3 &
\end{array}
$$

Example 1: Solve the following, $\quad 2^{x}=7$

NOTE: This example cannot be solved by writing with the same base. It has to be solved using the "new" way!

Example 2:

a) Evaluate each of the following:
i) $\quad \log _{2} 8$
ii) $\quad \log _{2} 16$
b) Based on those answers, estimate $\log _{2} 9$.
c) Evaluate: $\log _{2} 9$

Example 3: Evaluate $\log _{2} 100$ to three decimal places.

Change of base formula:
$\log _{b} x=\frac{\log x}{\log b}$

Example 4: Evaluate to 3 decimal places.
a) $\log _{4} 120$
b) $\log _{3} 15$

Example 5: Solve each of the following
a) $2^{x+1}=32$
i) Using common bases ii) Using Logarithms
$ش$

M3201-Section 7.4
at b) $3^{x-1}=20$
c) $4(3)^{x}=24$
d) $2^{x-1}=3^{x+1}$

Your Turn:
Solve for $\mathrm{x}: \quad 2^{x+1}=5^{x-1}$
ψ
p. 455-458, \#1ace,2ab,3ab,5ab,6ac,16

Word Problems:

In the last unit we completed questions involving half-life, doubling life, compound interest, and depreciation where we could solve the exponential equations by writing with the same base. We will now revisit those questions with one difference - we will not be able to write with the same base therefore we will have to take the log of both sides to finish solving the problem.

Example 6:

If a $\$ 1000$ deposit is made at a bank that pays 12% per year, compounded annually, how long will it take for the investment to reach $\$ 2000$.

Example 7: (ex. 3, p. 451)
Jahmal works in a laboratory that uses radioactive substances. The laboratory received a shipment of 500 g of radioactive radon-222. Only 13.417 g of the radon-222 remained 19.0 days later. Determine the half-life of radon-222 algebraically using logarithms.
Recall: The half-life equation is: $A=A_{o}\left(\frac{1}{2}\right)^{\frac{t}{h}}$

M3201- Section 7.4

Example 8: Error Analysis \#8, p. 457
Dave thought that he could also solve the exponential equation in Example 1 by taking the logarithm of each side in the first step. However, he made an error in his solution. Correct Dave's error, and complete his solution.

Dave's Solution

$$
\begin{aligned}
A & =P(1+i)^{n} \\
P & =3215 \\
i & =0.024 \\
A & =5000
\end{aligned}
$$

The number of compounding periods, n, is unknown.

$$
\begin{aligned}
5000 & =3215(1.024)^{n} & & \\
\log 5000 & =\log \left(3215(1.024)^{n}\right) & & \text { I took the common logarithm of each side of the equation. } \\
\log 5000 & =n \log (3215(1.024)) & & \text { I used the power law of logarithms to rewrite the equation. }
\end{aligned}
$$

$$
n=\frac{\log 5000}{\log (3215(1.024))} \quad \text { I isolated } n
$$

$$
n=1.051 \ldots
$$

It will take 2 years for the balance to reach $\$ 5000$.

I substituted the given values into the compound interest formula.

The interest is compounded annually, so I rounded up to 2 years.
This answer is different from my first answer, and it seems much too small.

Practice:
p. 457, \#10, 11, 12, 13 + Worksheet

