Section 7.5: Modelling Data Using Logarithmic Functions

NOTE:

- Domain of a logarithmic function: all positive real numbers
- Logarithmic regressions are mostly used for phenomena that grow quickly at first then slow down over time but the growth continues to increase without bound.
- Exponential regressions are typically used on phenomena where the growth begins slowly then increases very rapidly as time increases.

Example 1:

Which graph is exponential and which is logarithmic?

Example 2:

Create a scatterplot of the data to determine if we should use exponential or logarithmic regression.

x	0.5	0.7	0.9	1.0	1.2	1.4	1.8	2.0	2.3	2.7	3.2	3.8
y	0.5	1.6	2.7	3.1	3.7	4.4	5.1	5.8	6.4	7.0	7.7	8.3

Example 3:

The flash on most digital cancras requires a charged capacitor in order to operate. The pereent charge, Q, remaining on a capacitor was recorded at different times, \hbar a ffer the flash had gone off.

The t. 5 Hash duration represents the time until a capacior has only 50% of its initial charge. The 5 flash duration also represents the length of time that the Alach is effective, to ensure that the objeat being photographed is properly lit.
a) Construct a scatter plot for the given data.
b) Determine a logarithmic model for the data
c) Use your logarithmie model to determine the t. 5 flash duration to the nearest hundredth of a scond.

Percent Charge, $\mathrm{Q}(\%)$	Time, $\mathrm{t}(\mathrm{s})$
100.00	0
90.26	0.01
73.90	0.03
60.51	0.05
49.54	0.07
40.56	0.09

Rico's Solution

The equation is $y=0.459 \ldots-0.099 \ldots(\ln x)$.

At about 0.07 s , the t .5 flash duration has been reached.

NOTE: Most graphing calculators and spreadsheets provide the equation of the logarithmic regression function in the form:

$$
y=a+b \ln x
$$

Practice:
p. 466-471, \#2,3,4,7

