Math 3201
Review Sheet
Unit 7: Logarithmic Functions
Name: \qquad ANSWERS \qquad Due: Monday, May 4, 2015

All questions are to be completed on this paper. Show all workings, where applicable.

1. Given the graphs of $y=2^{x}$ and $y=\log _{2} x$, complete the following table.

	Exponential	Logarithmic
Domain	$x \in R$	$x>0$
Range	$y>0$	$y \in R$
y-intercept	$(0,1)$	none
x-intercept	None	$(1,0)$
Increasing/decreasing	Increasing	Increasing
End behaviour	Q2 to Q1	Q4 to Q1

2. What is $e^{x}=18$ in logarithmic form?
3. \qquad
\qquad
(A) $\ln x=18$
(B) $\quad \ln x=18$
(C) $\log _{x} 18=e$
(D) $\quad \log _{18} x=e$
4. What is $\log _{2}\left(\frac{1}{16}\right)=-4$ in exponential form?
5. \qquad A
(A) $\quad 2^{-4}=\frac{1}{16}$
(B) $\left(\frac{1}{16}\right)^{-4}=2$
(C) $\quad(-4)^{2}=\frac{1}{16}$
(C) $\left(\frac{1}{16}\right)^{2}=-4$
6. What is $2 \log A+\log B-5 \log C$ expressed as a single logarithm?
7. \qquad B \qquad
(A) $\quad \log \left(A^{2}+B-C^{5}\right)$
(B) $\log \left(\frac{A^{2} B}{C^{5}}\right)$
(C) $\log (2 A+B-5 C)$
(D) $\log \left(\frac{2 A B}{5 C}\right)$
8. Which is equivalent to $\log \left(\frac{A^{3} B}{C^{2}}\right)$?
9. \qquad C
(A) $3 \log A-\log B+2 \log C$
(B) $3 \log A+\log B-\log 2 C$
(C) $3 \log A+\log B-2 \log C$
(D) $\log 3 A+\log B-\log 2 C$
10. Write as a single \log arithm: $2 \log _{6} 3+\log _{6} 4-\log _{6} 8$.
11. \qquad C
(A) $\quad \log _{6} 2$
(B) $\quad \log _{6} 3$
(C) $\log _{6} \frac{9}{2}$
(D) $\quad \log _{6} 5$
12. Which expression is equivalent to $\ln \frac{8}{5}$?
13. \qquad
(A) $\ln 8-\ln 5$
(B) $\ln 5-\ln 8$
(C) $8 \ln 5$
(D) $\quad \ln 0.625$
14. Which expression is equivalent to $\log 88$?
(A) $\quad \log 80+\log 8$
(B) $\quad \log 22+\log 4$
(C) $\quad \log 11+\log 2$
(D) $\quad \log 100-\log 12$
15. What is the value of x, given $3^{x-1}=14$?
(A) $\frac{\log 14}{\log 3}+1$
(B) $\frac{\log 14}{\log 3}-1$
(C) $\frac{\log 3}{\log 14}-1$
(D) $\frac{\log 3}{\log 14}+1$
16. Match each equation with its' corresponding graph.

Equation I	$y=3\left(\frac{1}{2}\right)^{x}$	Equation II	$y=\frac{1}{3}(2)^{x}$
Equation III	$y=\ln x$	Equation IV	$y=-2 \ln x$

I \qquad
\qquad P \qquad

IV \qquad S
III \qquad Q
\qquad A \qquad
\qquad
8. \qquad B
11. What is the value of $\log _{5} 125$?

$$
y=3
$$

12. What is the value of $\log _{6} 25$?

$$
1.796
$$

13. What is the value of $\log _{2}\left(\frac{1}{32}\right)$?

$$
y=-5
$$

14. Solve for $x: \quad 2^{x}=6$

2.58

15. Evaluate: $\log _{3} 3+5 \log _{5} 1$.

1
16. Evaluate: $\log _{2} 16-\log _{2} 32+2 \log _{2} 4$.

3

17. Write $\log _{3} 27-\log _{3} 3+2 \log _{3}\left(\frac{1}{9}\right)$ as a single logarithm and then evaluate.

$$
\log _{3} \frac{9}{81}=-2
$$

18. Write $\log _{4} 5+\frac{1}{2} \log _{4} 16-\log _{4} 1.25$ as a single logarithm and then evaluate.

$$
\log _{4} 16=2
$$

19. Solve for x : $4^{x+1}=52$

$$
x=1.85
$$

20. Solve for x : $2^{x+3}=5^{2 x-1}$

$$
x=1.46
$$

21. The $\mathrm{pH}, p(x)$, of a solution can be determined using the formula $p(x)=-\log x$, where the concentration of hydrogen ions, x, is measured in $\mathrm{mol} / \mathrm{L}$.
a) Calculate to the nearest tenth, the pH of a solution with a hydrogen ion concentration of $1.5 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$.

$$
\mathrm{P}(\mathrm{x})=5.82
$$

b) If the pH of the solution is 6.6 , what is the concentration of the hydrogen ions?

$$
x=0.000000251
$$

c) How much more acidic is a solution with a pH of 1.8 than a solution with a pH of 2.4 ? Round your answer to the nearest tenth.

3.98

22. The intensity of a fire alarm is $0.0015 \mathrm{~W} / \mathrm{m}^{2}$. What is the sound level to the nearest decibel using the formula: $\beta=10(\log I+12)$, where β is the sound level in decibels and I is the sound intensity in W / m^{2} ?

91.76 db

23. Anne invests $\$ 9000$ in her grandchild's college fund. The fund grows at a rate of 8% per year compounded monthly. Algebraically determine how long will it take the fund to grow to $\$ 20000$?

$$
120 \text { months }=10 \text { years }
$$

24. The initial mass of cesium-137 is 700 mg . If it takes 84 years to decrease to 100 mg , algebraically determine the half-life. $A=A_{0}\left(\frac{1}{2}\right)^{\frac{t}{h}}$

$$
\mathrm{h}=30 \text { years }
$$

25. Shane was asked to write the following as a single logarithm. His solution is shown below. Identify his mistakes and provide a correct solution:
$2 \log _{2} 5-\log _{2}\left(\frac{4}{5}\right)+\frac{1}{2} \log _{2} 16 \quad$ error
$\log _{2} 5^{2}-\log _{2}\left(\frac{4}{5}\right)+\log _{2}\left(\frac{16}{2}\right)^{2}$
Correct solution
$\log _{2} 25-\log _{2}\left(\frac{4}{5}\right)+\log _{2} 8$
$\log _{2} 125$
$\log _{2}\left(25 \times \frac{4}{5} \times 8\right)$
26. An advertising agency has determined that the number of items sold is related to the amount of money spent on advertising. A logarithmic regression was performed and the results were as follows:

Ln $\operatorname{Re} g$

$$
\begin{aligned}
& y=a+b \ln x \\
& a=1500 \\
& b=315
\end{aligned}
$$

(a) Write the equation based on the result above.

$$
y=1500+315 \ln x
$$

(b) Use the equation to determine the number of items that will be sold if $\$ 10000$ is spent on advertising.

$$
y=4401 \text { items }
$$

