Math 3201 Review Sheet Unit 7: Logarithmic Functions

Name:_____ANSWERS_____

Due: Monday, May 4, 2015

2.____B____

3.____A_

4.___<mark>B</mark>_____

All questions are to be completed on this paper. Show all workings, where applicable.

1. Given the graphs of $y = 2^x$ and $y = \log_2 x$, complete the following table.

	Exponential	Logarithmic		
Domain	$x \in R$	<i>x</i> > 0		
Range	<i>y</i> > 0	$y \in R$		
y-intercept	(0,1)	none		
x-intercept	None	(1,0)		
Increasing/decreasing	Increasing	Increasing		
End behaviour	Q2 to Q1	Q4 to Q1		

- 2. What is $e^x = 18$ in logarithmic form?
- (A) $\ln x = 18$ (B) $\ln x = 18$ (C) $\log_x 18 = e$ (D) $\log_{18} x = e$

3. What is
$$\log_2\left(\frac{1}{16}\right) = -4$$
 in exponential form?
(A) $2^{-4} = \frac{1}{16}$ (B) $\left(\frac{1}{16}\right)^{-4} = 2$
(C) $(-4)^2 = \frac{1}{16}$ (C) $\left(\frac{1}{16}\right)^2 = -4$

4. What is $2\log A + \log B - 5\log C$ expressed as a single logarithm?

(A)
$$\log(A^2 + B - C^5)$$
 (B) $\log\left(\frac{A^2B}{C^5}\right)$

(C)
$$\log(2A + B - 5C)$$
 (D) $\log\left(\frac{2AB}{5C}\right)$

1

5. Wh	ich is equiv	alent to $\log\left(\frac{A^3B}{C^2}\right)$	$\Big)?$			5	_C
(A)	$3\log A - \log A$	$\log B + 2\log C$	(B) 31	$\log A + \log A$	$gB - \log 2C$		
(C)	$3\log A + \log A$	$\log B - 2\log C$	(D) log	$g 3A + \log A$	$B - \log 2C$		
6. Write as a single logarithm: $2\log_6 3 + \log_6 4 - \log_6 8$.					6	C	
(A)	$\log_6 2$		(B)	$\log_6 3$			
(C)	$\log_6\frac{9}{2}$		(D)	$\log_6 5$			
7. WI	nich express	ion is equivalent t	$o \ln \frac{8}{5}$?			7	_A
(A)	$\ln 8 - \ln 5$		(B)	$\ln 5 - \ln 3$	8		
(C)	8 ln 5		(D)	ln 0.625			
8. Which expression is equivalent to log 88 ?						8	B
(A)	$\log 80 + \log$	og 8	(B)	log 22 +	log 4		
(C)	$\log 11 + \log 1$	g 2	(D)	log100-	-log12		
9. What is the value of x, given $3^{x-1} = 14$? 9A						_A	
(A)	$\frac{\log 14}{\log 3}$ + 1		(B)	$\frac{\log 14}{\log 3}$	1		
(C)	$\frac{\log 3}{\log 14} - 1$		(D)	$\frac{\log 3}{\log 14}$ +	1		
10. Match each equation with its' corresponding graph.							
Equ	ation I	$y = 3\left(\frac{1}{2}\right)^{x}$	Equatio	n II	$y = \frac{1}{3} (2)^x$		
Equ	ation III	$y = \ln x$	Equatio	on IV	$y = -2 \ln x$		

I___R____

III___Q____

II___P____ IV____S___ 11. What is the value of $\log_5 125$?

y=3

12. What is the value of $\log_6 25$?

1.796

13. What is the value of $\log_2\left(\frac{1}{32}\right)$?

y = -5

14. Solve for $x: 2^x = 6$

2.58

15. Evaluate: $\log_3 3 + 5\log_5 1$.

1

16. Evaluate: $\log_2 16 - \log_2 32 + 2\log_2 4$.

3

17. Write $\log_3 27 - \log_3 3 + 2\log_3 \left(\frac{1}{9}\right)$ as a single logarithm and then evaluate.

$$\log_3 \frac{9}{81} = -2$$

18. Write $\log_4 5 + \frac{1}{2}\log_4 16 - \log_4 1.25$ as a single logarithm and then evaluate.

$$\log_4 16 = 2$$

19. Solve for $x: 4^{x+1} = 52$

20. Solve for $x: 2^{x+3} = 5^{2x-1}$

x =1.46

21. The pH, p(x), of a solution can be determined using the formula $p(x) = -\log x$, where the concentration of hydrogen ions, x, is measured in mol/L.

a) Calculate to the nearest tenth, the pH of a solution with a hydrogen ion concentration of $1.5 \times 10^{-6} mol/L$.

$$P(x) = 5.82$$

b) If the pH of the solution is 6.6, what is the concentration of the hydrogen ions? x = 0.00000251

c) How much more acidic is a solution with a pH of 1.8 than a solution with a pH of 2.4? Round your answer to the nearest tenth.

3.98

22. The intensity of a fire alarm is 0.0015 W/m^2 . What is the sound level to the nearest decibel using the formula: $\beta = 10(\log I + 12)$, where β is the sound level in decibels and *I* is the sound intensity in W/m^2 ?

91.76 db

23. Anne invests \$9000 in her grandchild's college fund. The fund grows at a rate of 8% per year compounded monthly. Algebraically determine how long will it take the fund to grow to \$20 000?

120 months = 10 years

24. The initial mass of cesium-137 is 700 mg. If it takes 84 years to decrease to 100 mg,

algebraically determine the half-life. $A = A_0 \left(\frac{1}{2}\right)^{\frac{1}{h}}$ h = 30 years

25. Shane was asked to write the following as a single logarithm. His solution is shown below. Identify his mistakes and provide a correct solution: $\begin{pmatrix} 4 \\ 1 \end{pmatrix}$

$$2 \log_{2} 5 - \log_{2} \left(\frac{4}{5}\right) + \frac{1}{2} \log_{2} 16$$
 error

$$\log_{2} 5^{2} - \log_{2} \left(\frac{4}{5}\right) + \log_{2} \left(\frac{16}{2}\right)$$
 Correct solution

$$\log_{2} 25 - \log_{2} \left(\frac{4}{5}\right) + \log_{2} 8$$

$$\log_{2} 125$$

$$\log_{2} \left(25 \times \frac{4}{5} \times 8\right)$$

26. An advertising agency has determined that the number of items sold is related to the amount of money spent on advertising. A logarithmic regression was performed and the results were as follows: $Ln \operatorname{Re} g$

$$y = a + b \ln x$$
$$a = 1500$$
$$b = 315$$

(a) Write the equation based on the result above.

$$y = 1500 + 315 \ln x$$

(b) Use the equation to determine the number of items that will be sold if \$10 000 is spent on advertising.

$$y = 4401$$
 items